Data Modernization with Google Cloud

L.L. Bean was established in 1912. It is a Freeport, Maine-based retailer known for its mail-order catalog of boots. The retailer runs 51 stores, kiosks, and outlets in the United States. It generates US $1.6 billion in annual revenues, of which US $1billion comes from its e-commerce engine. This means, delivery of a great omnichannel customer experience is a must and an essential part of its business strategy. But the retailer faced a significant challenge in sustaining its seamless omnichannel experience. It was relying on on-premises mainframes and distributed servers which made upgradation of clusters and nodes very cumbersome. It wanted to modernize its capabilities by migrating to the cloud. Through cloud adoption, it wanted to improve its online performance, accelerate time to market, upgrade effortlessly, and enhance customer experience.

L.L. Bean turned to Google Cloud to fulfill its cloud requirements. By modernizing data on, it experienced faster page loads and it was able to access transaction histories more easily. It also focused on value addition instead of infrastructure management. And, it reduced release cycles and rapidly delivered cross-channel services. These collectively improved its overall delivery of agile, cutting-edge customer experience.

Data Modernization with Google Cloud for Success

Many businesses that rely on siloed data find it challenging to make fully informed business decisions, and in turn accelerate growth. They need a unified view of data to be able to draw actionable, meaningful insights that can help them make fact-based decisions that improve operational efficiency, deliver improved services, and identify growth opportunities. In fact, businesses don’t just need unified data. They need quality data that can be stored, managed, scaled and accessed easily.

Google Cloud Platform empowers businesses with flexible and scalable data storage solutions. Some of its tools and features that enable this include:

BigQuery

This is a cost-effective, serverless, and highly scalable multi-cloud data warehouse that provides businesses with agility.

Vertex AI

This enables businesses to build, deploy, and scale ML models on a unified AI platform using pre-trained and custom tooling.

Why should businesses modernize with Google Cloud?

It provides faster time to value with serverless analytics, it lowers TCO (Total Cost of Ownership) by up to 52%, and it ensures data is secure and compliant.

Read this informative post on Cloud Cost Optimization for Better ROI.

Google Cloud Features

Improved Data Management

BigQuery, the serverless data warehouse from Google Cloud Platform (GCP), makes managing, provisioning, and dimensioning infrastructure easier. This frees up resources to focus on the quality of decision-making, operations, products, and services.

Improved Scalability

Storage and computing are decoupled in BigQuery, which improves availability and scalability, and makes it cost-efficient.

Analytics and BI

GCP also improves website analytics by integrating with other GCP and Google products. This helps businesses get a better understanding of the customer’s behavior and journey. The BI Engine packaged with BigQuery provides users with several data visualization tools, speeds up responses to queries, simplifies architecture, and enables smart tuning.

Data Lakes and Data Marts

GCP’s enables ingestion of batch and stream/real-time data, change data capture, landing zone, and raw data to meet other data needs of businesses.

Data Pipelines

GCP tools such as Dataflow, Dataform, BigQuery Engine, Dataproc, DataFusion, and Dataprep help create and manage even complex data pipelines.

Discover how Indium assisted a manufacturing company with data migration and ERP data pipeline automation using Pyspark.

Data Orchestration

For data orchestration too, GCP’s managed or serverless tools minimize infrastructure, configuration, and operational overheads. Workflows is a popular tool for simple workloads while Cloud Composer can be used for more complex workloads.

Data Governance

Google enables data governance, security, and compliance with tools such as Data Catalog, that facilitates data discoverability, metadata management, and data class-level controls. This helps separate sensitive and other data within containers. Data Loss Prevention and Identity Access Management are some of the other trusted tools.

Data Visualization

Google Cloud Platform provides two fully managed tools for data visualization, Data Studio and Looker. Data Studio is free and transforms data into easy-to-read and share, informative, and customizable dashboards and reports. Looker is flexible and scalable and can handle large data and query volumes.

ML/AI

Google Cloud Platform leverages Google’s expertise in ML/AI and provides Managed APIs, BigQuery ML, and Vertex AI. Managed APIs enable solving common ML problems without having to train a new model or even having technical skills. Using BigQuery, models can be built and deployed based on SQL language. Vertex AI, as already seen, enables the management of the ML product lifecycle.

Indium to Modernize Your Data Platform With GCP

Indium Software is a recognized data and cloud solution provider with cross domain expertise and experience. Our range of services includes data and app modernization, data analytics, and digital transformation across the various cloud platforms such as Amazon Web Server, Azure, Google Cloud. We work closely with our customers to understand their modernization needs and align them with business goals to improve the outcomes for faster growth, better insights, and enhanced operational efficiency.

To learn more about Indium’s data modernization and Google Cloud capabilities.

Visit

FAQs

What Cloud storage tools and libraries are available in Google Cloud?

Along with JSON API and the XML API, Google also enables operations on buckets and objects. Google cloud storage commands provide a command-line interface with cloud storage in Google Cloud CLI. Programmatic support is also provided for programming languages, such as Java, Python, and Ruby.



Author: Indium
Indium Software is a leading digital engineering company that provides Application Engineering, Cloud Engineering, Data and Analytics, DevOps, Digital Assurance, and Gaming services. We assist companies in their digital transformation journey at every stage of digital adoption, allowing them to become market leaders.