MLOps Managed Services Archives - Indium https://www.indiumsoftware.com/blog/tag/mlops-managed-services/ Make Technology Work Thu, 02 May 2024 04:39:03 +0000 en-US hourly 1 https://wordpress.org/?v=6.5.3 https://www.indiumsoftware.com/wp-content/uploads/2023/10/cropped-logo_fixed-32x32.png MLOps Managed Services Archives - Indium https://www.indiumsoftware.com/blog/tag/mlops-managed-services/ 32 32 Kubeflow Pipeline on Vertex AI for Custom ML Models https://www.indiumsoftware.com/blog/kubeflow-pipeline-on-vertex-ai-for-custom-ml-models/ Thu, 02 Feb 2023 11:56:32 +0000 https://www.indiumsoftware.com/?p=14381 What is Kubeflow? “Kubeflow is an open-source project created to help deployment of ML pipelines. It uses components as python functions for each step of pipeline. Each component runs on the isolated container with all the required libraries. It runs all the components in the series one by one.” In this article we are going

The post Kubeflow Pipeline on Vertex AI for Custom ML Models appeared first on Indium.

]]>
What is Kubeflow?

“Kubeflow is an open-source project created to help deployment of ML pipelines. It uses components as python functions for each step of pipeline. Each component runs on the isolated container with all the required libraries. It runs all the components in the series one by one.”

In this article we are going to train a custom machine learning model on Vertex AI using Kubeflow Pipeline.

About Dataset

Credit Card Customers dataset from Kaggle will be used. The 10,000 customer records in this dataset include columns for age, salary, marital status, credit card limit, credit card category, and other information. In order to predict the customers who are most likely to leave, we must analyse the data to determine the causes of customer churn.

Interesting Read: In the world of hacking, we’ve reached the point where we’re wondering who is a better hacker: humans or machines.

Let’s Start

Custom Model Training

Step 1: Getting Data

We will download the dataset from GitHub. There are two csv files in the downloaded dataset called churner_p1 and churner_p2, I have created a Big Query dataset credit_card_churn with the tables as churner_p1 and churner_p2 with this csv files. I have also created the bucket called credit-card-churn on Cloud Storage. This bucket will be used to store the artifacts of the pipeline

Step 2: Employing Workbench

Enable the Notebook API by going to Vertex AI and then to the Workbench section. Then select Python 3 by clicking on New Notebook. Make sure to choose the us-central1 region.

It will take a few minutes to create the Notebook instance. Once the notebook is created click on the Open JupyterLab to launch the JupyterLab.

We will also have to enable the following APIs from API and services section of Vertex AI.

  1. Artifact Registry API
  2. Container Registry API
  3. AI Platform API
  4. ML API
  5. Cloud Functions API
  6. Cloud Build API

Now click on the Python 3 to open a jupyter notebook in the JupyterLab Notebook section and run the below code cells.

USER_FLAG = “–user”

!pip3 install {USER_FLAG} google-cloud-aiplatform==1.7.0

!pip3 install {USER_FLAG} kfp==1.8.9

This will install google cloud AI platform and Kubeflow packages. Make sure to restart the kernel after the packages are installed.

import os

PROJECT_ID = “”

# Get your Google Cloud project ID from gcloud

if not os.getenv(“IS_TESTING”):

    shell_output=!gcloud config list –format ‘value(core.project)’ 2>/dev/null

    PROJECT_ID = shell_output[0]

    print(“Project ID: “, PROJECT_ID)

Create the variable PROJECT_ID with the name of project.

BUCKET_NAME=”gs://” + PROJECT_ID

BUCKET_NAME

Create the variable BUCKET_NAME, this will return the same bucket name we have created earlier.

import matplotlib.pyplot as plt

import pandas as pd

from kfp.v2 import compiler, dsl

from kfp.v2.dsl import pipeline, component, Artifact, Dataset, Input, Metrics, Model, Output, InputPath, OutputPath

from google.cloud import aiplatform

# We’ll use this namespace for metadata querying

from google.cloud import aiplatform_v1

PATH=%env PATH

%env PATH={PATH}:/home/jupyter/.local/bin

REGION=”us-central1″

PIPELINE_ROOT = f”{BUCKET_NAME}/pipeline_root/”

PIPELINE_ROOT

This will import required packages and create the pipeline folder in the credit-card-churn bucket.

#First Component in the pipeline to fetch data from big query.

#Table1 data is fetched

@component(

    packages_to_install=[“google-cloud-bigquery==2.34.2”, “pandas”, “pyarrow”],

    base_image=”python:3.9″,

    output_component_file=”dataset_creating_1.yaml”

)

def get_data_1(

   bq_table: str,

   output_data_path: OutputPath(“Dataset”)

):

    from google.cloud import bigquery

    import pandas as pd

    bqclient = bigquery.Client()

   table = bigquery.TableReference.from_string(

      bq_table

    )

    rows = bqclient.list_rows(

        table

    )

   dataframe = rows.to_dataframe(

        create_bqstorage_client=True,

    )

   dataframe.to_csv(output_data_path)

The first component of the pipeline will fit the data from the table churner_p1 from big query and pass the csv file as the output for the next component. The structure is the same for every component. We have used the @component decorator to install the required packages and specify the base image and output file, then we create the get_data_1 function to get the data from big query.

#Second Component in the pipeline to fetch data from big query.

#Table2 data is fetched

#First component and second component doesnt need inputs from any components

@component(

    packages_to_install=[“google-cloud-bigquery==2.34.2”, “pandas”, “pyarrow”],

    base_image=”python:3.9″,

    output_component_file=”dataset_creating_2.yaml”

)

def get_data_2(

    bq_table: str,

    output_data_path: OutputPath(“Dataset”)

):

   from google.cloud import bigquery

   import pandas as pd

    bqclient = bigquery.Client()

   table = bigquery.TableReference.from_string(

       bq_table

    )

   rows = bqclient.list_rows(

        table

    )

    dataframe = rows.to_dataframe(

        create_bqstorage_client=True,

    )

    dataframe.to_csv(output_data_path)

The second component of the pipeline will fit the data from the table churner_2 from big query and pass the csv file as the output for the next component. The first component and second component do not need inputs from any components.

#Third component in the pipeline to to combine data from 2 sources and for some data transformation

@component(

    packages_to_install=[“sklearn”, “pandas”, “joblib”],

   base_image=”python:3.9″,

  output_component_file=”model_training.yaml”,

)

def data_transformation(

    dataset1: Input[Dataset],

    dataset2: Input[Dataset],

    output_data_path: OutputPath(“Dataset”),

):

    from sklearn.metrics import roc_curve

    from sklearn.model_selection import train_test_split

    from joblib import dump

    from sklearn.metrics import confusion_matrix

    from sklearn.tree import DecisionTreeClassifier

    from sklearn.ensemble import RandomForestClassifier

   import pandas as pd

    data1 = pd.read_csv(dataset1.path)

    data2 = pd.read_csv(dataset2.path)

    data=pd.merge(data1, data2, on=’CLIENTNUM’, how=’outer’)

    data.drop([“CLIENTNUM”],axis=1,inplace=True)

   data = data.dropna()

   cols_categorical = [‘Gender’,’Dependent_count’, ‘Education_Level’, ‘Marital_Status’,’Income_Category’,’Card_Category’]

    data[‘Attrition_Flag’] = [1 if cust == “Existing Customer” else 0 for cust in data[‘Attrition_Flag’]]

    data_encoded = pd.get_dummies(data, columns = cols_categorical)

    data_encoded.to_csv(output_data_path)

The third component is where we have combined the data from the first and second component and did the data transformation such as dropping the “CLIENTNUM” column, dropping the null values and converting the categorical columns into numerical. we will pass this transformed data as csv to the next component.

#Fourth component in the pipeline to train the classification model using decision Trees or Randomforest

@component(

    packages_to_install=[“sklearn”, “pandas”, “joblib”],

    base_image=”python:3.9″,

    output_component_file=”model_training.yaml”,

)

def training_classmod(

    data1: Input[Dataset],

   metrics: Output[Metrics],

    model: Output[Model]

):

    from sklearn.metrics import roc_curve

    from sklearn.model_selection import train_test_split

    from joblib import dump

    from sklearn.metrics import confusion_matrix

    from sklearn.ensemble import RandomForestClassifier

    import pandas as pd

    data_encoded=pd.read_csv(data1.path)

    X = data_encoded.drop(columns=[‘Attrition_Flag’])

    y = data_encoded[‘Attrition_Flag’]

   X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=100,stratify=y)

   model_classifier = RandomForestClassifier()

    model_classifier.fit(X_train,y_train)

    y_pred=model_classifier.predict(X_test)

    score = model_classifier.score(X_test,y_test)

    print(‘accuracy is:’,score)

    metrics.log_metric(“accuracy”,(score * 100.0))

    metrics.log_metric(“model”, “RandomForest”)

    dump(model_classifier, model.path + “.joblib”)

In the fourth component we will train the model with the Random Classifier and we have used the “accuracy” as the evaluation metric.

@component(

   packages_to_install=[“google-cloud-aiplatform”],

    base_image=”python:3.9″,

    output_component_file=”model_deployment.yaml”,

)

def model_deployment(

    model: Input[Model],

    project: str,

    region: str,

    vertex_endpoint: Output[Artifact],

   vertex_model: Output[Model]

):

    from google.cloud import aiplatform

   aiplatform.init(project=project, location=region)

    deployed_model = aiplatform.Model.upload(

        display_name=”custom-model-pipeline”,

      artifact_uri = model.uri.replace(“model”, “”),

        serving_container_image_uri=”us-docker.pkg.dev/vertex-ai/prediction/sklearn-cpu.0-24:latest”

    )

    endpoint = deployed_model.deploy(machine_type=”n1-standard-4″)

    # Save data to the output params

    vertex_endpoint.uri = endpoint.resource_name

    vertex_model.uri = deployed_model.resource_name

Fifth component is the last component, in this we will create the endpoint on the Vertex AI and deploy the model. We have used Docker as base IMAGE and have deployed the model on “n1-standard-4” machine.

@pipeline(

    # Default pipeline root. You can override it when submitting the pipeline.

    pipeline_root=PIPELINE_ROOT,

    # A name for the pipeline.

    name=”custom-pipeline”,

)

def pipeline(

   bq_table_1: str = “”,

    bq_table_2: str = “”,

    output_data_path: str = “data.csv”,

    project: str = PROJECT_ID,

    region: str = REGION

):

    dataset_task_1 = get_data_1(bq_table_1)

   dataset_task_2 = get_data_2(bq_table_2)

   data_transform=data_transformation(dataset_task_1.output,dataset_task_2.output)

    model_task = training_classmod(data_transform.output)

    deploy_task = model_deployment(model=model_task.outputs[“model”],project=project,region=region)

In the last we have pipeline function which will call all the components in the sequential manner: dataset_tast_1 and dataset_tast_2 will get the data from the big query, data_transform will transform the data, model_task will train the Random Classifier model and deploy_task will deploy the model on Vertex AI.

compiler.Compiler().compile(pipeline_func=pipeline, package_path=”custom-pipeline-classifier.json”)

Compiling the pipeline.

run1 = aiplatform.PipelineJob(

    display_name=”custom-training-vertex-ai-pipeline”,

    template_path=”custom-pipeline-classifier.json”,

    job_id=”custom-pipeline-rf8″,

   parameter_values={“bq_table_1”: “credit-card-churn.credit_card_churn.churner_p1″,”bq_table_2”: “credit-card-churn.credit_card_churn.churner_p2”},

   enable_caching=False,)

Creating the pipeline job.

run1.submit()

Running the pipeline job.

With this we have completed creating the Kubeflow pipeline and we can see it on the Pipelines section of Vertex AI.

 

Our Pipeline has run successfully and we have managed to get 100% accuracy for the classification.

We can use this model to get the online prediction using Rest API or Python. We can also create the different pipelines and compare their metrics on Vertex AI.

With this we have completed the project and learned how to create the Pipeline on Vertex AI for custom train models.

I hope you will find it useful.

To learn more about our AI & ML Solutions and Capabilities

Contact Us

See you again.

The post Kubeflow Pipeline on Vertex AI for Custom ML Models appeared first on Indium.

]]>
Avoid Data Downtime and Improve Data Availability for AI/ML https://www.indiumsoftware.com/blog/avoid-data-downtime-and-improve-data-availability-for-ai-ml/ Fri, 11 Nov 2022 10:36:42 +0000 https://www.indiumsoftware.com/?p=13268 AI/ML and analytics engines depend on the data stack, making high availability and reliability of data critical. As many operations depend on AI-based automation, data downtime can prove disastrous, bringing businesses to a grinding halt – albeit temporarily. Data downtime encompasses a wide range of problems related to data, such as it being partial, erroneous,

The post Avoid Data Downtime and Improve Data Availability for AI/ML appeared first on Indium.

]]>
AI/ML and analytics engines depend on the data stack, making high availability and reliability of data critical. As many operations depend on AI-based automation, data downtime can prove disastrous, bringing businesses to a grinding halt – albeit temporarily.

Data downtime encompasses a wide range of problems related to data, such as it being partial, erroneous, inaccurate, having a few null values, or being completely outdated. Tackling the issues with data quality can take up the time of data scientists, delaying innovation and value addition.

Data analysts typically end up spending a large part of their day collecting, preparing and correcting data. This data needs to be vetted and validated for quality issues such as inaccuracy. Therefore, it becomes important to identify, troubleshoot, and fix data quality to ensure integrity and reliability. Since machine learning algorithms need large volumes of accurate, updated, and reliable data to train and deliver solutions, data downtime can impact the success of these projects severely. This can cost companies money and time, leading to revenue loss, inability to face competition, and unable to be sustainable in the long run. It can also lead to compliance issues, costing the company in litigation and penalties.

Challenges to Data Availability

Some common factors that cause data downtime include:

Server Failure: If the server storing the data fails, then the data will become unavailable.

Data Quality: Even if data is available but is inconsistent, incomplete, or redundant, it is as good as not being available.

Outdated Data: Legacy data may be of no use for purposes of ML training.

Failure of Storage: Sometimes, the physical storage device may fail, making data unavailable.

Network Failure: When the network through which the data is accessed fails, data can become unavailable.

Speed of Data Transfers: If the data transfer is slow due to factors such as where data is stored and where it is used, then that can also cause data downtime.

Compatibility of Data: If the data is not compatible with the environment, then it will not be available for training or running the algorithm.

Data Breaches: Access to data may be blocked, or data may be stolen or compromised by malicious factors such as ransomware, causing data loss

Check out our Machine Learning and Deep Learning Services

Visit

Best Practices for Preventing Data Downtime

Given the implications of data downtime on machine learning algorithms, business operations, and compliance, enterprises must ensure the quality of their data. Some of the best practices in avoiding data downtime include:

Create Data Clusters:As storage devices, networks, and systems can fail, creating clusters to spread data will improve availability in case of failures and prevent or minimize data loss. To enable responding to issues at the earliest, tracking and monitoring of availability is also important. The infrastructure should be designed for load balancing and resiliency in case of DDoS attacks.

Accelerate Recovery: Failures are inevitable, and therefore, being prepared for a quick recovery is essential. It could range from troubleshooting to hardware replacement or even restarting the operating systems and database services. It requires the right skills to match the technologies used to speed up the process.

Remove Corrupted Data: Incomplete, incorrect, outdated, or unavailable cause data corruption. Such data cannot be trusted and requires a systematic approach to identify and rectify the errors. The process should be automated and prevent new errors from being introduced.

Improve Data Formatting and Organization: Often, enterprises grapple with the issue of inaccurate data. It is difficult to access and use due to being formatted differently. Deploying tools that can integrate data onto a shared platform is important.

Plan for Redundancy and Backups: Back up data and store it in separate locations or distributed networks to ensure availability and faster restoration in case data is lost or corrupt. Setting up storage devices in a redundant array of independent disks (RAID) configuration is also one approach for this.

Use Tools to Prevent Data Loss: Data breaches and data center damages can be mitigated using data loss prevention tools.

Erasure Coding: In this data protection method, data is broken into fragments, expanded, and then encoded with redundant pieces of data. By storing them across different locations or storage devices, data can be reconstructed from the fragments stored in other locations even if one fails or data becomes corrupted.

Indium to Ensure Your Data Quality

Indium Software is a cutting-edge technology solutions provider with a specialization in data engineering, data analytics, and data management. Our team of experts can work with your data to ensure 24×7 availability using the most appropriate technologies and solutions.

We can design and build the right data architecture to ensure redundancy, backup, fast recovery, and high-quality data. We ensure resilience, integrity, and security, helping you focus on innovation and growth.

Our range of data services include:

Data Engineering Solutions to maximize data fluidity from source to destination BI & Data Modernization Solutions to facilitate data-backed decisions with insights and visualization

Data Analytics Solutions to support human decision-making in combination with powerful algorithms and techniques

AI/ML Solutions to draw far-reaching insights from your data.

FAQs

What is the difference between data quality and accuracy?

Data quality refers to data that includes the five elements of quality:

● Completeness

● Consistency

● Accuracy

● Time-stamped

● Meets standards

Data Accuracy is one of the elements of data quality and refers to the exactness of the information.

Why is data availability important for AI/ML?

Large volumes of high-quality, reliable data is needed to train artificial learning/machine learning algorithms. Data downtime will prevent access to the right kind of data to train algorithms and get the desired result.

The post Avoid Data Downtime and Improve Data Availability for AI/ML appeared first on Indium.

]]>
Building the Right Architecture for MLOps https://www.indiumsoftware.com/blog/building-the-right-architecture-for-mlops/ Tue, 18 Oct 2022 07:14:25 +0000 https://www.indiumsoftware.com/?p=12715 Machine learning projects are expanding, with the global machine learning (ML) market expected to grow at a CAGR of 38.8%, from $21.17 billion in 2022 to $209.91 billion by 2029. To accelerate the speed of development and shorten the time to market, businesses are combining DevOps principles with ML development and data engineering. Called MLOps

The post Building the Right Architecture for MLOps appeared first on Indium.

]]>
Machine learning projects are expanding, with the global machine learning (ML) market expected to grow at a CAGR of 38.8%, from $21.17 billion in 2022 to $209.91 billion by 2029. To accelerate the speed of development and shorten the time to market, businesses are combining DevOps principles with ML development and data engineering. Called MLOps or Machine Learning Operations solution, it involves streamlining the production, maintenance, and monitoring of machine learning models and is a collaborative effort between IT, data scientists, and DevOps engineers. It involves automating operations using ML-based approaches to customize service offerings and improve productivity and efficiency.

Some of the benefits of MLOps include faster and easier deployment of ML models. It helps with continuous improvement in a cost, time, and resource-efficient way by facilitating collaboration between different teams and tasks. The models can also be easily reused for other use cases using MLOps. As validation and reporting are an integral part of the system, it makes monitoring easy.

To know more about how Indium can help you build the right MLOps architecture using Databricks

Get in touch

Preparing to Build the MLOps Architecture

The development of an MLOps project is just like any other project, but with a few additional steps to ensure an easy and seamless flow.

Setting up the Team: Planning and assembling the right team is the first step. Depending on how complex the project is, the team will include one or more ML engineers, data engineers to manipulate data from various sources, data scientists for data modeling, and DevOps engineers for development and testing.

ETL: For data modeling to develop machine learning algorithms, data needs to be extracted from various sources, and a pipeline created for seamless data extraction in the system. The data needs to be cleaned and processed using an automated system that helps with seamless transformations and delivery.

Version Control: Like in DevOps, version control plays an important role in MLOps too, and Git repository can be used for this as well.

Model Validation: In DevOps, testing is important and includes unit testing, performance, functionality, integration testing, and so on. The equivalent in an ML project is a two-step process – model validation and data validation.

Monitoring: Once the software has gone live, the role of DevOps ends until the time of further enhancement. In an MLOps project, though, periodical monitoring of ML model performance is essential. This is done to validate it against the live data using the original validation parameters. This will help identify any problems, and the modeling will have to be reworked

Must read: MLOps on AWS: Enabling faster

Databricks for MLOps Architecture: 5 Things to Consider

While this makes MLOps sound ideal and easy, in reality, one of the challenges it faces is the need for a huge infrastructure, including computing power and memory capacity that on-premise systems cannot meet without additional costs. Therefore, cloud architecture is a better alternative that allows for quick scaling up and down based on need and thereby keeps costs based on need.

It also needs constant monitoring due to the ever-changing requirements and the need for the models to reflect these changes. As a result, businesses must frequently monitor the parameters and modify the variables of the model as and when required.

Some key challenges may also arise in MLOps with regard to managing data, code, and models across the development lifecycle. Multiple teams handling the various stages of development, testing, and production collaborate on a single platform, leading to complex needs for access control and parallel use of multiple technologies.

Databricks, with its robust ELT, data science, and machine learning features, is well-suited for building the MLOps architecture. Some of the factors that make Databricks consulting services ideal for MLOps include:

Lakehouse Architecture: Databricks uses a Lakehouse architecture to meet these challenges and unify data lakes and data warehouse capabilities under a single architecture and use open formats and APIs to power data workloads.

Operational Processes: The process of moving the ML project through the development cycle should be clearly defined, covering coding, data, and models. Databricks allows the code for ML pipelines to be managed using the current DevOps tooling and CI/CD processes. It simplifies operations by following the same deployment process as model training code for computing features, inference, and so on. MLflow Model Registry, a designated service, is used to update code and models independently, enabling the adaption of DevOps methods for ML.

Collaboration and Management: Databricks provides a unified platform on a shared lakehouse data layer. In addition to facilitating MLOps, it allows ML data management for other data pipelines. Permission-based access control across the execution environments, data, code, and models simplifies management and ensures the right levels of access to the right teams.

Integration and Customization: Databricks used open formats and APIs, including

– Git

– Related CI/CD tools

– Delta Lake and the Lakehouse architecture

– MLflow

Additionally, the data, code, and models are stored in open formats in the cloud account and supported by services with open APIs. All modules can be integrated with the current infrastructure and customized by fully implementing the architecture within Databricks.

Managing the MLOPs Workflow: Databricks provides developers with a development environment to allow data scientists to build the ML pipelines code spanning computation, inference, model training, monitoring, and more. In the staging environment, these codes are tested and finally deployed in the production environment.

Check out our MLOps solution Capabilities

Indium’s Approach

Indium Software has deep expertise in Databricks and is recognized by ISG as a strong contender for data engineering projects. Our team of experts works closely with our partners to build the right MLOps architecture using Databricks Lakehouse to transform their business. Ibrix is an Indium Unified Data Analytics platform that integrates the strengths of Databricks with the capabilities of Indium to improve business agility and performance by providing deep insights for a variety of use cases.

Inquire Now! To know more about how Indium can help you build the right MLOps architecture using Databricks solutions.

The post Building the Right Architecture for MLOps appeared first on Indium.

]]>
The Rise of The Chatbot: Opening New Vistas for Businesses  https://www.indiumsoftware.com/blog/rise-of-chatbot-the-new-vistas-for-business/ Thu, 29 Sep 2022 06:39:40 +0000 https://www.indiumsoftware.com/?p=12331 Introduction A chatbot is a software application powered by AI solutions that communicates with clients in natural language via messaging or voice commands. It can be designed to respond the same way every time to the user, or it can adapt its responses depending on the situation. It can be used via a text messaging

The post The Rise of The Chatbot: Opening New Vistas for Businesses  appeared first on Indium.

]]>
Introduction

A chatbot is a software application powered by AI solutions that communicates with clients in natural language via messaging or voice commands. It can be designed to respond the same way every time to the user, or it can adapt its responses depending on the situation. It can be used via a text messaging application, website chat window, or other social media messaging platforms such as Twitter and Facebook. 

Chatbots play an integral role in e-commerce, allowing businesses to communicate with and engage their customers. Since human presence is not required, chatbots can facilitate information at high speeds. For example, a popular learning platform, Coursera, uses a chatbot to impart an entire course online, with learners conversing and clearing their doubts via the bot.  

For more details regarding Indium’s AI testing solutions, please visit us at:

Get in touch

Progression of the Chatbot 

While many would agree that chatbots have only recently become a buzzword, the earliest notion dates back to when humans began devising methods to interface with computers. Eliza, the first-ever chatbot launched in 1966 by Joseph Weizenbaum of the MIT Artificial Intelligence Laboratory, was invented even before the personal computer became popular. Eliza assessed the keywords supplied as input before triggering an output according to a defined set of criteria. Several chatbots still employ this approach to produce output. 

Business Benefits of Using Chatbots

A chatbot strengthens customer relationships by interacting with customers and delivering responses. It achieves its market objectives and drives sales promotion processes and service availability. Within some fields, it also provides advantages like decreased operating costs, reduced human error, 24/7 assistance, and automation.

How Chatbots Enable Digital Assurance

Before a chatbot is released in the market, a digital assurance check must be done. It should perceive the customer’s intent and scale appropriately. It is also essential to test it with multiple business cases, input values, and template combinations.

Digital Assurance Workflow

Training Data 

The chatbot must be programmed to comprehend specific mathematical models to determine the user’s purpose. The chat should be tested from the commencement of the use-case test until the conclusion of non-functional components. Chatbot testing is comparable to: 

  • Robotic Process Automation (RPA) testing 
  • Security Testing and 
  • Unified Functional Testing (UFT). 

Pre-launching Tests in Chatbot

Prior to its release, there are three ways to test the chatbot:  

  • General test 
  • Product/service-specific test 
  • Restrictions test

Completing these tests before the release would be ideal since they reveal the status of the main areas and the underlying problems.

General Testing

In the preliminary phase, answering the client’s query is the main criterion. For instance, if a user joins the chat to ask a question, greetings or welcome messages must be displayed on the screen as a first general test. If this does not occur, there is no point in continuing to test.

Domain/Specific Testing

If the first step of welcoming the user has been completed, we move on to the domain test, which involves answering the customer’s queries regarding a unique group or product. This is the conversation stage where your chatbot provides credible information on your products/services. The chatbot should be able to answer coded or frequently asked questions and attain the maximum correct answer ratio. 

Manual Testing

Amazon’s Mechanical Turk, a marketplace that automatically uses human intelligence for testing purposes, reduces the amount of manual labor necessary for manual testing. This strategy increases trust in a product and reduces the number of manual errors.

Limit Testing

Limit testing is the final step of pre-launch testing. In limit testing, the chatbot’s commitment is responding to irrelevant customer information and how effectively it resolves customer matters.

This might interest you: Things to Keep in Mind while Testing Machine Learning Applications

Post Launching Tests in Chatbot

After launching the chatbot, the following tests are required to certify the chatbot is stable and robust enough for optimum utilization.

A/B Testing

A/B testing compares two different types of products to see which product is better. In this test methodology, we must collect the maximum data we can. Though a dated testing model, it is still one of the most effective ways to analyze the efficacy of differences within products.

A/B testing processes two factors:

• Visual Factors: To assess the best designs, colors, and location on the world wide web

Conversational Factors: To design the quality and performance of an algorithm

Apart from the above factors, there are a few vital aspects and procedures to attain the ideal state of a chatbot, as outlined below.

E2E Testing

This is a very familiar testing technique within QA that ensures real-time user experience and end-to-end flow via text-based or voice-based test coverage.

Natural Language Processing Testing (NLP)

Natural language processing is the linguistically-oriented field of computer science concerned with the software’s ability to understand natural human language, both written and spoken. NLP can define role-based modeling to produce logical algorithms that assess and comprehend a user’s lengthy procedural communication. Natural Language Processing (NLP) Testing evaluates a chatbot’s ability to read the language based on the user’s intent, leading to more natural interactions.

Performance Testing

This testing can involve evaluating concurrent users to ensure the sustainability and quality of responses under varying load conditions, creating a seamless experience for end users.

Security Testing

Chatbots may have access to vast quantities of data or private information. Consequently, they may be a desirable target for hackers, and known web application flaws may also be a security risk for chatbots.

Technological Trends in Chatbots

  • Personalization: It has the training to store customer profiles and behavioral status to proceed with upcoming chats. It also suggests profiles or brands using artificial intelligence.
  • Machine Learning Operations (MLOps): It uses a CRM to maintain customers’ information which helps to provide customers with details from the previous conversation.
  • Voice Recognition: It involves faster intercommunication without having to type, like Alexa, Siri, etc.  

Conclusion

The last few years have seen the profile of chatbots growing exponentially. They have the potential to act as an intuitive link between customers and businesses. The rise of e-commerce and emphasis on customer experience will unlock new opportunities and ease while resolving customer FAQs with a quick turnaround.

We understand the importance of a streamlined testing strategy for the success of the chatbot software application. Despite that, the mere presence of a testing strategy does not ensure the quality and performance of a specific group or product. The strategic selection of target groups or domains, and the right choice of testing methodologies, will go a long way in delivering the desired results.

Combined with testing best practices and industry standards, Indium has been helping clients overcome the obstacles of chatbot testing, helping expedite the development of remarkable chatbot apps that drive new business opportunities.

 

The post The Rise of The Chatbot: Opening New Vistas for Businesses  appeared first on Indium.

]]>
CEOs and CXOs, how are you handling the shift to AI technologies? https://www.indiumsoftware.com/blog/ceos-and-cxos-how-are-you-handling-the-shift-to-ai-technologies Tue, 31 May 2022 04:45:42 +0000 https://www.indiumsoftware.com/?p=9905 Disruptors have set new norms in customer service, speed-to-market, and innovation in every industry. Artificial intelligence solutions have reached a tipping point, with prominent companies displaying ground-breaking achievements, altering marketplace, and distinguishing themselves in their fields. Strategic enablers such as automation, prediction, and optimization are at the heart of AI. The ability of your company

The post CEOs and CXOs, how are you handling the shift to AI technologies? appeared first on Indium.

]]>
Disruptors have set new norms in customer service, speed-to-market, and innovation in every industry. Artificial intelligence solutions have reached a tipping point, with prominent companies displaying ground-breaking achievements, altering marketplace, and distinguishing themselves in their fields. Strategic enablers such as automation, prediction, and optimization are at the heart of AI.

The ability of your company to automate routine processes, forecast results, and optimise resources is critical to its success. High-growth firms are, in fact, meeting the business imperatives—creating exceptional customer experiences, expediting product and service delivery, optimising operations, and profiting on the ecosystem. They are realizing these achievements while also meeting compliance and risk management needs at scale.

For cutting edge AI/ML solutions paired with data and analytics solutions, get in touch with us:

Contact us now!

Artificial intelligence-driven technologies taking over work at all levels of businesses has evolved into a vision in which AI serves as more of an assistant. It takes over various activities so that humans can focus on what they do best. With AI at their disposal, physicians can spend more time on treatment plans as AI tool will take complete ownership of medical scans. Similarly, a marketing professional can focus better on brand nuances as AI can accurately predict the consequences of various channel spen

What does AI and innovation bring to the table?

AI is being used by businesses to forecast business outcomes, streamline operations, increase efficiency, guard against cyberthreats and fraud, and uncover new market opportunities. These forecasts can assist leaders in staying one step ahead in the competition and be resilient to market volatility.

High-growth leaders, according to Forrester Research, invest extensively in AI. According to a Forrester poll, more than half of respondents expect a five-fold return on their AI investments. High-growth CEOs who invest $10 million can expect a $60 million return on their investment. In comparison to low-growth organisations, leaders spend twice as much on data and analytics and invest 2.5 times as much in AI and machine learning (ML) platforms.

Firms that invest in data scientists with hard-core abilities, such as the ability to create predictive, machine learning, deep learning, natural language processing (NLP), computer vision, and other sorts of models, expand quicker than those that do not.

Most leaders, on the other hand, are now looking to expand the usage of AI. This viewpoint implies that your platform should be built to aid in the operationalization and automation of model and tool management throughout your entire business.

Automation allows your team to refocus on high-value activities that capitalise on your unique selling points. Look for a technology that allows you to automate tasks like:

  • Preparation of data
  • Feature development
  • Machine learning algorithms selection.
  • Finding the best potential solution using hyperparameter optimization
  • Modeling with machine learning, deep learning

You might be interested in: AI/ML and Web 3.0 – The Future of the Internet

A piece of advice on those lines

Some of the concepts, such as “innovate with and for diversity,” are refreshingly prescriptive. Others, such as “reduce the risk of unfair bias,” are too broad or ambiguous to be relevant. The devil is in the details for IT and industry leaders interested in embracing any or all these ideas. Here’s a quick rundown of each principle:

  • Innovate with and for a diverse group of people: There are sure to be huge blind spots when the people envisioning and creating an AI system all look alike. Hiring a diverse team to design, install, monitor, and apply AI helps to close these gaps.
  • Transparency, explainability, and interpretability should all be designed into and implemented: Transparency relies on totally transparent “glass box” algorithms, whereas interpretability relies on techniques that explain how an opaque system like a deep neural network works.
  • Reduce the likelihood of unjust bias: There are over 20 alternative mathematical representations of fairness. The best one for your strategy, use case, and corporate values is determined by your strategy, use case, and corporate values. To put it another way, fairness is a subjective concept.
  • Examine and track the model’s fitness and impact: The epidemic served as a cautionary tale for businesses concerned about data loss. Companies should adopt machine learning operations (MLOps) to keep an eye on AI’s performance and explore using bias bounties to crowd source bias detection.
  • Encourage a responsible AI culture throughout the organization: By employing a chief trust officer or chief ethics officer, some companies are beginning to take a top-down approach to build a culture of responsible AI.
  • Responsibly manage data gathering and use: While the Business Roundtable approach places a premium on data quality and accuracy, it neglects to address privacy concerns. For ethical AI management, it’s critical to understand the interaction between AI and personal data.
  • Invest in a workforce that is AI-ready for the future: The nature of jobs for most people is more likely to be transformed than eliminated by AI, but most workers aren’t prepared. They don’t have talents, dispositions, or trust in AI to make it work for them. Employees can be better prepared to work alongside AI by investing in the robotics quotient, which is a measure of readiness.
  • Existing governance systems should be updated to account for AI: Ambient data governance, a technique for incorporating data governance into everyday data interactions and intelligently adapting data to user purpose, is well-suited to AI. In the context of AI governance, map your data governance initiatives.
  • Implement AI governance across the entire organization: Governance has become a nasty term in many corporations. This is not only regrettable, but also potentially hazardous. Find out how to get rid of governance fatigue.

The post CEOs and CXOs, how are you handling the shift to AI technologies? appeared first on Indium.

]]>